A Dermoscopic Inspired System for Localization and Malignancy Classification of Melanocytic Lesions

نویسندگان

چکیده

This study aims at developing a clinically oriented automated diagnostic tool for distinguishing malignant melanocytic lesions from benign nevi in diverse image databases. Due to the presence of artifacts, smooth lesion boundaries, and subtlety features, accuracy such systems gets hampered. Thus, proposed framework improves melanoma detection by combining clinical aspects dermoscopy. Two methods have been adopted achieving aforementioned objective. Firstly, artifact removal localization are performed. In second step, various significant features as shape, color, texture, pigment network detected. Features further reduced checking their individual significance (i.e., hypothesis testing). These feature vectors then classified using SVM classifier. specific domain used this design opposed abstract images. The knowledge an expert enhanced methodology. approach is implemented on multi-source dataset (PH2 + ISBI 2016 2017) 515 annotated images, thereby resulting sensitivity, specificity 83.8%, 88.3%, 86%, respectively. experimental results promising, can be applied detect asymmetry, network, colors, texture lesions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dermoscopic criteria and melanocytic lesions.

Dermoscopy is a noninvasive, in vivo method for the early diagnosis of malignant melanoma and the differential diagnosis of pigmented lesions of the skin. By allowing visualization of sub-macroscopic pigmented structures that correlate with specific underlying histopathologic structures, dermoscopy provides a more powerful tool than the naked-eye examination for clinicians to determine the need...

متن کامل

Computer-aided classification of melanocytic lesions using dermoscopic images.

BACKGROUND Computer-assisted diagnosis of dermoscopic images of skin lesions has the potential to improve melanoma early detection. OBJECTIVE We sought to evaluate the performance of a novel classifier that uses decision forest classification of dermoscopic images to generate a lesion severity score. METHODS Severity scores were calculated for 173 dermoscopic images of skin lesions with kno...

متن کامل

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

Dermoscopic characterization of longitudinal melanocytic lesions on acral skin.

durante la salida de la misma. En segundo lugar, por reflujo de sangre u otros fluidos a través del trayecto de la aguja, llevándose consigo algunas de estas células tumorales hacia la superficie de la piel. Y, por último, debido a un aumento súbito de la presión intratumoral, como suele ocurrir en el desarrollo de la radiofrecuencia4. Dado que muchos de estos pacientes se encuentran en un esta...

متن کامل

Dermoscopic classification of atypical melanocytic nevi (Clark nevi).

OBJECTIVES To create a dermoscopic classification of atypical melanocytic nevi (Clark nevi) and to investigate whether individuals bear a predominant type. DESIGN Digital dermoscopic images of Clark nevi were classified according to structural features, ie, reticular, globular, or homogeneous patterns or combinations of these types. The nevi were also characterized as central hypopigmented or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app12094243